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Abs(racL We present a closed-form expression for the probabilily dirdibution of he hcighr 
fluctuations in the Zhang model of anomalous surface roughening. The result--which 
inciudes both the steady state behaviour and the time evolution to the steady state- 
is based on an analogy between the (d = 1 + 1)dimensional 'surface' problem and 
a d = 1 L&y Right. In the limit case of conventional ballistic deposition we obtain a 
Gaussian distribution for the height Ructuations. Our results are corroborated by detailed 
numerical simulations. 

Surface roughening and Uvy Rights are two subjects of intensive current experimen- 
tal and theoretical interest (for reviews see (1-31.) These two topics in statistical 
physics are generally treated as separate problems. In this letter we present a theory 
for surface roughening that connects this phenomenon in 1 + 1 dimensions to the 
properties of a simple one-dimensional Levy flight. 

Various surface growth models such as the Kardar-Parisi-Zhang (KPZ) equa- 
tion and ballistic deposition are consistent with a scaling form for the RMS surface 
width [4,5], 

W ( L , I )  - L"f(Z/L"i@) (1) 

with the property that for 1 << I <<I,,  w - lp  and for I >> f , ,  w - La.  Here I ,  - Lz 
is the crossover time to a 'steady state' in which the width is time-independent, L 
is the linear size of the system, and z I a/P = 2 - a is the dynamic exponent. 
An analysis of the KPZ equation and numerical results on ballistic deposition yield 
a = 1/2 and p = 1/3 ford = 1. However, recent experiments on surface. roughening 
suggest anomalously large values for both a and P: a E 0.75 and 0 2 0.6 [U]. 

Recently Zhang (91 suggested that the anomalous roughening found in experi- 
ments can be explained by an uncorrelated 'noise' q(r , l )  obeying a power-law dis- 
tribution, p ( q )  - q-p-' where 11 2 1. This anomalous noise can be simulated in 

0305-4470/91/160925+07503.50 @ 1991 IOP Publishing Ltd i925 



L926 letter to the Editor 

a deposition context by depositing rods of sue !sampled from a power-law probability 
distribution, 

p ( t )  - e-a-'. (2) 

The growth rule is similar to the conventional ballistic deposition rule, i.e., a depcsited 
rod is attached to the highest nearest-neighbour surface site. The site at which 
deposition next occurs can be chosen either defemiinirficaliy as in 19,101 or randomly 
as in [ll]. Here we use the same growth rule as in [ll], and a 48-bit random 
number generator which was tested by verifying that it explicitly reproduced the 
probability distribution (2). The Zhang idea [9] has received recent support from both 
theory [U, 131 and numerical simulation [%11], which suggest that both exponents 01 

and p are anomalously large, and depend continuously on the parameter p (at least 
for p < pc cz 5).  

Here we derive a closed-form expression for the probability distribution for the 
fluctuations 6 h ( r , f )  5 h ( r , t )  - (h(r)) in surface height h ( r , r )  at point r. Very recently, 
this distribution and its spatial scaling properties were studied numerically [lo]; a 
power-law tail was found, but no explanation of its origin was given. 'lb this end, 
we develop a formal analogy between anomalous roughening and the statistics of a 
Uvy walk [2]; at each unit of time a random walker steps a unit length, moving 
! successive steps in the same direction before randomly changing direction, with e 
taken from a Evy distributionp(t) - e-"-'. Since for p > 1, (e )  is finite, the Levy 
walk model will have the same distribution as the Levy flight [2] where the walker 
makes e steps in one unit of time. The probability density P(r ,n)  that the walker is 
at position r after n steps has a tail distribution of the form [ 14,151 

where rx  - n1I2 for p > 2 and rx  - n'/a for p 6 2. 
Consider first I = 1, which corresponds by definition to the depcsition of L rods- 

each of length Pi where (, is a random variable chosen from (2). Since the lengths of 
the rods obey a S v y  distribution, so aiso the set of diiierences in the iengths of the 
rods (which is the set of numbers 6h(r,f = 1)) must obey a Lkvy distribution. Hence 
the probability density P(6h,L, t  = 1) for 6h is exactly the distribution of a Uvy walk, 
and from (3a) 

Now consider time f = 2, corresponding to two layers of rods. The distribution of 
the sum of two rods is also a Uvy distribution with L scaled by a factor of two [2]. 
Hence equation (3b) holds provided L is replaced by 2L. 

For the simplest 'random deposition' model, equation (36) still holds for any 
i, with i repiaced by X ,  where N zz I i  is the totai number oi deposited rods. 
For the Zhang variant of ballistic deposition, we assume that the distribution does 
not change-only that time and space are now correlated due to the growth rule 
or the KPZ equation. Therefore a surface fluctuation can grow laterally Only until 
a steady state is achieved, at time f, - L*. For I >> I,, the behaviour is quite 
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different: equation (36) will hold but with L replaced not by IL but rather by I,L E 
L*+' L3-". The probability distribution becomes independent of time, assuming 
the asymptotic form 

Since for I >> I,, 6h - w - L", we find from the scaling form of (4) a self-consistent 
equation for a, a = (3  - a ) / p  or 

Equation (Sj was derived as a iower bound by Zhang and Krug [12,13]. Note that a 
assumes its classical value a = 1/2 at p = pc = 5. Substituting (5) into (4), we obtain 
the scaling form 

7b obtain the probability at early time 1 << I << I,, we use again the time-space 
relation I ,  - L' of (1). Thus L in (36) should be replaced by N = IL = I I ' /~  yielding 

Since 6h - 10 we obtain, 

The above considerations, equations (4)-(S), are valid for p > 2. For p < 2, the 
relation I &  - L'+' fails since I, is bounded from below by L. A 'rare' fluctuation 
produced by a very long rod cannot disappear faster than the time it takes for the 
'tree growth' appearing on the top of that rod to overlap the system. The horizontal 
width of such a 'tree' typically grows by one site in each time step, so I ,  2 L. Thus 

which follows 
ofie mc~t  repelt the q y m e ~ t s  !ezdicg ennitinns 14i-(~i iirinn I L = L2 

-7 ""..-.I" \ I \-I ""..'b .x 

(9) 
2 
P 

a z o = -  b < 21. 

Note that (9) complements the Zhang-Krug prediction Cor values of j~ below 2. 
From (1) we calculated a and p; the results, plotted in figure 1, are compared with 
the prediction given by equations (5 ) ,  (8) and (9). 

The analogy to Uvy walks predicts not only the tails of the probability densities 
but also their behaviour in the range of small fluctuations. In this range, the distribu- 
tion of Uvy walks P(r,n) is known to be Gaussian [14,15], predicting that P(Sh,L,f) 
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Figure 1. Comparison of numerical results for exponenls o (0) and 4 (0) with 
lheorelical predictions given for p > 2 by equalions (5 )  (solid line) and (8) (dolled line), 
and far p < 2 by (9) (solid line). The rsul l s  far r > 2 are faken from Buldyrev eI 01 
u11. 

is also Gaussian. Thus equations (6) and (7)-as well as the crossover from Gaussian 
to power law--can be combined to a single scaling relation 

W 

Here w = w ( L , f ) ,  is the j r s t  moment of P(6h,L,t); our numerical results for w 
support (1). The scaling function in (lb) obeys 

The crossover from Gaussian to a power law occurs at a value y x  of y 6h/w which 
increases as p increases as expected from the analysis in [14,15]. We use in our 
simulations the first moment of P ( b h , L , f )  because it converges in the whole range 
of studied values of p while the second moment diverges for p < 2. For p > 2 both 
moments have the same behaviour. 

The data collapse shown in figure 2 supports (lo). Moreover, piotting the data 
in figure 3(u) as loglog[P(6h,L)/P(O,L)] versus log6h for several values of L shows 
a clear range of slope 2, supporting a Gaussian form for small bh. Some deviations 
from scaling form given by (10) may be due to finite-size corrections to scaling or to 
multifractality at small distances found by Barabisi er al [16]. 
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Figure 2. Log-log scaling plot of wP(Sh,L.r )  againsl 16hllw. Here w is thefist moment 
of P(&,L,r)  for (a) w = 1.5 and (b) 14 = 3. Symbols in (a) arc. + (L = 1028,t = 64); 
0 ( L  = 2048,f = 256); x ( L  = 2048,r = 1024); A(L = 256,r > 4096);O (L = 
512,f > 40%); 0 (L = 1024,r > 4096). Symbals in (b) are: 0 (f = 32,L = 2048); A 
(f = 128,L = 2048); 0 ( r  = 512,L = 2048); + (f > lh384,L = 512); x (f > 16384.L = 
1024); 0 (1 > 32768,L = 2048). The straight lines have slopes of (a) 2.5 and (b)  4, as 
predicted by (6). 

It can be seen from figure 3(b) that as p increases, the Gaussian region of the 
probability distribution also increases. Thus we expect that in the case of conventional 
ballistic deposition (p  = m) the distribution will be Gaussian: 

and 

In figure 3(c) we present numerical data supporting (11). 
In summary, we present an analogy between the random surface problem in 1 + 1 

dimensions and the simple d = 1 Uvy walk. The analogy predicts an nnolylicfom for 
the probability density for the height fluctuations in anomalous surface roughening. 
The probability density crosses over from a Gaussian for small 6h to an asymptotic 
power-/aw Uvy distribution for large 6h. For the conventional ballistic deposition 
model, this analogy is with a conventional random walk with unit step lengths--and 
the probability distribution is Gaussian. Our approach suggests that for p < 2 a 
new singular class of surfaces does exist. We cannot rule out the possibility that the 
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Figure 3. ( 0 )  Log-log scaling plots Of 
log[P(Sh = O,L,r)/P(6h,L,t)] versus [6hl/w for 

= 3 for diiierent system sizes L and times 1. 
The straight line has the slope 2, as should be 
for Gaussian distribution. The symbols are the 
same as thme used in figure 2(b). (b) Log- 
log plot of lag[P(Sh = O,L,r)/P(Sh.L,r)] as a 
function of 16hI/w for diiierent values of p (the 
data for each value of u obtained for L = 1024 
and large I ,  greater than tx): 0 (p = m); x 
(g = 6);  + (u = 5);  0 (p = 4); 0 (p = 3); A 
(p = 2). The crossover value of Sh/w at which 
the behaviour changes from Gausian (straight 
line with slope 2) to p e r  law increases grad- 
ually with the value of @. (c) Log-log plot of 
log[P(6h = O,L,i)/P(Sh,L,r)] as a function of 
16hl/w for p = m, which is the case of ConVm- 
tional ballistic deposition. Here w scales accord- 
ing to (1) with CI = 112 , 0 = 113. The Gaus- 
sian behaviour is found in the entire range of 6h: 
0 (r = 64,L = 40%); A (r  = 256,L = 4099; 0 
(r = 1024,L = 4096); + (L = 512,t > 16384); 
x (L = ioz4,1 > 16384); o (L = 2048,t > 
32768); 0 (L = 4096,r > 32768). 



Letter to the Editor L931 

same scaling form of distribution (10) is also valid for the Zhang model in higher 
dimensions 1171, although the surface itself can no longer be considered as a record 
of a linear walk or a flight. 

We wish to thank NSF, ONR, and BSF for support, and J Kertksz and T Vicsek for 
valuable discussions. 
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